Sepsis

Definition of sepsis
- Infection: the inflammatory response to micro-organisms or the presence of micro-organisms in normally sterile sites
- Systemic inflammatory response syndrome (SIRS): systemic response to various insults including infection, trauma, surgery, burns; includes two or more of the following:
 - Respiratory rate (RR) >20 or $P_aCO_2 <4.3$ kPa
 - Heart rate (HR) >90
 - Temperature >38.3 °C or <36 °C
 - White cell count (WCC) >12 or <4 $x 10^9$/L
 - Acutely altered mental state
 - Glucose >8.3 mM (in the absence of diabetes mellitus)
- Sepsis: systemic response to infection i.e. SIRS + source of infection e.g.
 - Focal crackles/bronchial breathing on chest auscultation
 - Consolidation on chest radiograph (CXR)
 - Positive urine dipstick and/or culture
- Severe sepsis: sepsis + organ dysfunction or tissue hypoperfusion
 - Organ dysfunction
 - Respiratory: new/increased oxygen requirements to maintain oxygen saturations (SpO_2) >90%
 - Renal: creatinine >177 µM or urine output <0.5 ml/kg/hour for 2 hours
 - Hepatic: bilirubin >34 µM
 - Coagulation: platelets <100 $x 10^9$/L, INR >1.5 or APTT >60 s
 - Tissue hypoperfusion
 - Systolic blood pressure (SBP) <90 mmHg or mean arterial pressure (MAP) <65 mmHg
 - SBP >40 mmHg below normal
 - Lactate >2 mM
- Septic shock: sepsis + persistent hypoperfusion despite adequate fluid resuscitation (20 ml/kg bolus of crystalloid)
 - SBP <90 mmHg or MAP <65 mmHg despite adequate fluid resuscitation
 - SBP >40 mmHg below normal despite adequate fluid resuscitation
 - Lactate >4 mM

Aetiology of sepsis
- Sepsis can occur due to infection at any site in the body; bacteria are the usual culprit although viruses, fungi and parasites can all cause sepsis
- Respiratory
 - Pneumonia
 - Lung abscess
- Cardiac
 - Endocarditis
 - Myocarditis
 - Pericarditis
- Genito-urinary
 - Cystitis
 - Pyelonephritis
 - Sexually-transmitted infections (STIs)
- Gastrointestinal
 - Gastroenteritis
- Cholecystitis
- Ascending cholangitis
- Appendicitis
- Diverticulitis
- Bowel perforation
- **Neurological**
 - Meningitis
 - Encephalitis
 - Cerebral abscess
- **Dermatological**
 - Cellulitis
 - Ulcers
 - Wound infection
 - Necrotising fasciitis
- **Orthopaedic**
 - Osteomyelitis
 - Septic arthritis

Risk factors for sepsis
- **Immunocompromise**
 - Extremes of age
 - Acquired immunodeficiency syndrome (AIDS)
 - Chemotherapy or underlying malignancy (especially haematological)
 - Steroids
 - Alcohol misuse
 - Malnutrition
 - Pregnancy
 - Genetic immune deficiencies — can present in adulthood (e.g. CVID)
- **In-dwelling devices**
 - Vascular lines
 - Peripheral venous cannula (PVC)
 - Central venous catheter (CVC)
 - Arterial line (ART)
 - Urinary catheters
 - Urethral catheter
 - Suprapubic catheter
 - Drains
- **Recurrent antibiotic therapy**

Pathophysiology of sepsis
- **Increased vascular permeability**
 - Pro-inflammatory cytokines released as part of the systemic response to infection damage the vascular endothelium resulting in an inability to regulate vascular permeability
 - As a result, the vascular endothelium becomes leaky, resulting in the migration of fluid and protein from the intravascular to extravascular space and a ‘capillary leak syndrome’
 - This leads to hypovolaemia, reduced preload, stroke volume (SV) and cardiac output (CO) via the Frank-Starling mechanism, as well as pulmonary oedema and hypoxia in the lungs
- **Myocardial dysfunction**
 - The reduction in SV due to increased vascular permeability reduces CO via the Frank-Starling mechanism
- In the early stages of sepsis, CO is maintained via an increase in HR and myocardial contractility and a ‘hyperdynamic circulation’ is seen.
- However, further increases in HR reduce cardiac filling and coronary perfusion time, resulting in reduced CO and myocardial ischaemia, respectively.
- In the later stages of sepsis, pro-inflammatory cytokines, in addition to hypoxia and acidosis, directly impair myocardial contractility, reducing CO further.
- **Disseminated intra-vascular coagulation (DIC)**
 - Pro-inflammatory cytokines damage the vascular endothelium leading to widespread activation of the coagulation system and clot formation.
 - This leads to thrombosis and multi-organ failure, but also thrombocytopenia and prolonged coagulation times from the consumption of platelets and clotting factors.

History in sepsis

- **General symptoms**
 - Fever
 - Chills
 - Malaise
 - Myalgia
 - Confusion
 - Constitutional symptoms indicative of underlying systemic disease (weight loss, fever, night sweats, lumps and bumps [nodes]).
- **Symptoms of the source**
 - Respiratory
 - Productive cough
 - Dyspnoea
 - Pleuritic chest pain
 - Cardiac
 - Chest pain
 - Valvular heart disease
 - Prosthetic valve replacement
 - Genito-urinary
 - Dysuria
 - Urinary frequency
 - Urinary urgency
 - Strangury
 - Cloudy, foul-smelling urine
 - Loin pain
 - Gastrointestinal
 - Abdominal pain
 - Nausea and vomiting
 - Diarrhoea
 - Jaundice
 - Neurological
 - Headache
 - Neck stiffness
 - Photophobia
 - Confusion
 - Drowsiness
 - Seizures
 - Dermatological
 - Hot, swollen, red, painful areas of skin
 - Orthopaedic
- Hot, swollen, red, painful joints

- Other considerations
 - Contacts, including non-human
 - Travel history
 - Dates and destinations
 - Vaccinations
 - Chemoprophylaxis
 - Sexual history
 - Sexual partners in last three months (women, men, hetero/homosexual)
 - Last sexual intercourse
 - Use of protective contraception
 - Previous STIs
 - Current partner and their sexual history
 - Vaccination history

Examination in sepsis

- General signs
 - Pyrexia
 - Rigors
 - Tachypnoea
 - Tachycardia
 - Acutely altered mental state

- Signs of the source
 - Respiratory
 - Ipsilateral reduced air entry
 - Ipsilateral dullness to percussion
 - Ipsilateral crackles/bronchial breathing
 - Cardiac
 - Splinter haemorrhages
 - Osler nodes
 - Janeway lesions
 - New regurgitant murmur
 - Roth spots
 - Genito-urinary
 - Suprapubic tenderness
 - Loin tenderness
 - Gastrointestinal
 - Abdominal distension
 - Abdominal tenderness
 - Guarding
 - Rigidity
 - Jaundice
 - Neurological
 - Nuchal rigidity
 - Kernig’s sign positive
 - Brudzinski’s sign positive
 - Photophobia
 - Confusion
 - Reduced/fluctuating consciousness level
 - Focal neurological signs
 - Papilloedema
 - Dermatological
- Warm, erythematous, tender, oedematous areas of skin
- Pupuric rash
 - Orthopaedic
 - Warm, erythematous, tender, oedematous joints
 - Other
 - Nodes
- Signs of septic shock
 - Airway
 - May be compromised by reduced consciousness level
 - Breathing
 - Hypoxia
 - Tachypnoea
 - Circulation
 - Warm, flushed peripheries
 - In early stages of sepsis
 - Cold, pale peripheries
 - In later stages of sepsis
 - Tachycardia
 - Hypotension
 - Disability
 - Confusion
 - Reduced consciousness level

Initial investigation of sepsis
- Venous blood gas (VBG) looking for lactic acidosis suggestive of severe sepsis (>2 mM) or septic shock (>4 mM)
- Full blood count (FBC) looking for raised WCC, neutrophilia or neutropenia, as well as haemoglobin (Hb) level for its oxygen-carrying capacity
- Urea & electrolytes (U&Es) looking for impaired renal function
- Liver function tests (LFTs) looking for derangement that may suggest a hepatobiliary source or hepatic failure as a complication
- Clotting and fibrinogen looking for DIC
- C-reactive protein (CRP)
- Blood cultures
 - Peripheral cultures
 - Lines cultures if vascular lines present
- Urine dipstick +/- culture looking for leucocytes, nitrites and bacteria that would suggest a genito-urinary source
- Electrocardiogram (ECG)
- CXR looking for focal consolidation that would suggest a respiratory source or pulmonary oedema that would suggest acute respiratory distress syndrome (ARDS)
- Sputum culture if productive cough present
- Stool culture if diarrhoea present

Further investigation of sepsis
- Echocardiography (echo) if endocarditis suspected
- Lumbar puncture (LP) if meningitis suspected
- CT chest and/or abdomen if source remains occult
Initial management of sepsis

- Assess the patient from an ABCDE perspective
- Maintain a patent airway: use manoeuvres, adjuncts, supraglottic or definitive airways as indicated and suction any sputum or secretions
- Deliver high flow oxygen 15L/min via reservoir mask and titrate to achieve $S_{p}O_{2}$ 94-98% or 88-92% if known to have chronic obstructive pulmonary disease (COPD)
- Attach monitoring
 - Pulse oximetry
 - Non-invasive blood pressure
 - Three-lead cardiac monitoring
- Request 12 lead ECG and portable CXR
- Obtain intravenous (IV) access and take bloods
- Anti-pyretics
 - Give paracetamol 1 g orally (PO) +/- ibuprofen 400 mg PO if no contraindications
 - If temperature remains high consider removal of excess clothing +/- bathing with tepid water
- Sepsis six
 - Oxygen titrated to achieve $S_{p}O_{2}$ 94-98% or 88-92% if known to have COPD
 - Check lactate
 - Take blood cultures
 - Give IV antibiotics
 - Should be given as soon as possible and within an hour of recognising severe sepsis or septic shock
 - If the source is known, give the appropriate empirical IV antibiotic(s) as per local guidelines
 - For sepsis of unknown origin, give the appropriate broad-spectrum IV antibiotic(s) as per local guidelines e.g. piperacillin + tazobactam (tazocin) + gentamicin; once the source has been identified, switch to the appropriate empirical IV antibiotic(s) as per local guidelines
 - Give dexamethasone 10 mg IV if bacterial meningitis suspected
 - Commence IV fluid resuscitation
 - Guided by clinical context
 - Give boluses of crystalloid 500-1000 ml IV and re-assess after each
 - Patients with severe sepsis should receive a minimum of 20 ml/kg
 - Patients with septic shock often require up to 60 ml/kg
 - Monitor urine output, aiming for >0.5 ml/kg/hour; this may require urinary catheter insertion
- Source control
 - Removal of infected line eg urinary catheter, arterial line, central line
 - Abscess drainage
 - Tissue debridement
- Early goal-directed therapy (EGDT)
 - 1: Central venous pressure (CVP) >8 mmHg
 - Patients who remain hypotensive (SBP <90 mmHg) despite 20 ml/kg of crystalloid IV by definition have septic shock
 - These patients should ideally have a CVC inserted and their CVP monitored; fluid resuscitation should continue with boluses of crystalloid 500-1000 ml IV, aiming to maintain CVP >8 mmHg
 - 2: Mean arterial pressure (MAP) >65 mmHg or SBP >90 mmHg
 - Once CVP >8 mmHg, patients can be considered to have adequate preload to maintain CO
If they remain hypotensive (MAP <65 mmHg and/or SBP <90 mmHg) in spite of this, a vasopressor should be commenced to maintain these target BPs

First line vasopressor is noradrenaline

- 3: Central venous oxygen saturations ($S_{cv}O_{2}$) >70%
 - $S_{cv}O_{2}$ can be considered a marker of the balance between oxygen supply and demand; if low (<70%), there is a relative deficiency ie inadequate supply and/or excessive demand
 - If $S_{cv}O_{2}$ is low, it may be improved by increasing oxygen content and myocardial contractility
 - Oxygen content can be improved with high-flow oxygen and transfusion to a target Hb of 70-90 g/L
 - Myocardial contractility can be improved by commencing an inotrope such as dobutamine

Further management of sepsis

- Ensure tight glycaemic control with a sliding scale if necessary to maintain glucose <8.3 mM
- If mechanically ventilated, avoid excessive inspiratory pressures and aim for tidal volume 5-7 ml/kg
- Treat any complications
- Consider low dose steroids for septic shock refractory to fluid resuscitation and vasopressor therapy
- Consider activated protein C for severe sepsis and high risk of death
- Once a specific culprit organism has been identified from culture growth, switch to narrower-spectrum antibiotic(s) to which the organism is sensitive
- As sepsis resolves and patient improves, consider switching antibiotics from IV to oral

Complications of sepsis

- Respiratory failure
 - Acute lung injury (ALI)
 - Acute respiratory distress syndrome (ARDS)
- Cardiac failure
- Renal failure
- Hepatic failure
- Shock
- DIC
- Death

Common questions concerning sepsis

- Define the term 'systemic inflammatory response syndrome' (SIRS)
 - Systemic response to various insults including infection, trauma, surgery, burns; includes two or more of the following:
 - Respiratory rate (RR) >20 or $P_{a}CO_{2}$ <4.3 kPa
 - Heart rate (HR) >90
 - Temperature >38.3 °C or <36 °C
 - White cell count (WCC) >12 or <4 x 10⁹/L
 - Acutely altered mental state
 - Glucose >8.3 mM (in the absence of diabetes mellitus)
- Define the term sepsis
 - Systemic response to infection ie SIRS + source of infection
- Define the term severe sepsis
 - Sepsis + organ dysfunction or tissue hypoperfusion
• Define the term septic shock
 o Sepsis + persistent hypoperfusion despite adequate fluid resuscitation (20 ml/kg bolus of crystalloid)

• List three broad categories of risk factors for sepsis
 o Immunocompromised
 o In-dwelling devices
 o Recurrent antibiotic therapy

• What six steps should be taken on recognition of sepsis?
 o Oxygen titrated to achieve S_pO_2 94-98% or 88-92% if known to have COPD
 o Check lactate
 o Take blood cultures
 o Give IV antibiotics
 o Commence IV fluid resuscitation
 o Monitor urine output

• What is the purpose of checking lactate levels?
 o Hyperlactataemia acts as a marker of tissue hypoperfusion suggesting severe sepsis (>2 mM) or septic shock (>4 mM)
 o In addition, the resulting high anion gap metabolic acidosis has negative effects on cellular and organ function

• What antibiotics should be commenced on recognition of sepsis?
 o If the source is known, give the appropriate empirical IV antibiotic(s) as per local guidelines
 o For sepsis of unknown origin, give the appropriate broad-spectrum IV antibiotic(s) as per local guidelines e.g. piperacillin + tazobactam (tazocin) + gentamicin; once the source has been identified, switch to the appropriate empirical IV antibiotic(s) as per local guidelines

• In addition to antibiotics, what action may also be required to target the underlying infection
 o Source control

• What approach should be taken to fluid resuscitation in sepsis?
 o Guided by clinical context
 o Give boluses of crystalloid 500-1000 ml IV and re-assess after each
 o Patients with severe sepsis should receive a minimum of 20 ml/kg
 o Patients with septic shock often require up to 60 ml/kg

• What medication can be given to control fever in sepsis?
 o Anti-pyretics e.g. paracetamol 1 g PO +/- ibuprofen 400 mg PO if no contraindications

• List the three aims of EGDT in sepsis
 o 1: CVP >8 mmHg
 o 2: MAP >65 mmHg or SBP >90 mmHg
 o 3: S_cvO_2 >70%

• Outline the possible complications of sepsis
 o Respiratory failure
 o Cardiac failure
 o Renal failure
 o Hepatic failure
 o Shock
 o DIC
 o Death