Pleural Effusion

Definition of pleural effusion
- Accumulation of fluid between the pleural layers

Epidemiology of pleural effusion
- Estimated prevalence of pleural effusion is 320 cases per 100,000 people in industrialized countries, with a distribution of etiologies related to the prevalence of underlying diseases.

Causes of pleural effusion
- Can be divided into Transudative or Exudative

Transudative pleural effusion
- Involve increased hydrostatic pressure or reduced osmotic pressure in the microvascular circulation (commonly caused by organ failures)
 - Failures
 - Left ventricular failure
 - Liver failure (cirrhotic liver disease)
 - Nephrotic syndrome and hypoalbuminaemia
 - Pulmonary
 - Pulmonary embolism (can be transudates or exudates)
 - Atelectasis
 - Malignancy (5% are transudate)
 - Cardiac
 - Constrictive pericarditis
 - Other
 - Hypothyroidism
 - Meig’s syndrome (ovarian tumours producing right-sided effusion)

Exudative pleural effusion
- Involve an increase in capillary permeability and impaired pleural fluid resorption
 - Infection
 - Parapneumonic
 - TB
 - Empyema
 - Malignancy
 - Rheumatological
 - Rheumatoid arthritis
 - Connective tissue disease (RA, SLE)
 - Pulmonary embolism (can be transudates or exudates)
 - Rare causes
 - Post-MI, pancreatitis, mesothelioma, sarcoidosis, asbestosis
 - Drug induced (methotrexate, amiodarone, bromocriptine, phenytoin, nitrofurantoin)
 - Radiotherapy
 - Yellow-nail syndrome, familial Mediterranean fever
 - Lymphangioleiomyomatosis
 - Pneumothoraces and cylothoraces in middle-aged women.
- Tx: progesterone (but not very good)

Presentations of pleural effusion
Clinical examination will usually pick up effusion >500ml
- SOB
- Cough
- Chest pain
- Reduced chest wall movement
- Mediastinal deviation away (if large)
- Stony dullness to percussion
- Decreased breath sounds
- Decreased Vocal resonance
- Bronchial breathing or aegophony (bleating vocal resonance) over top of effusion, due to lung compression

Differential diagnosis of pleural effusion (decreased air entry on auscultation)
- Consolidation
- Collapse
- Pleural thickening

Investigation of pleural effusion
- Bloods
 - Including amylase, LDH, TFT
 - RF and autoimmune profile
- ABG
- CXR
 - Sensitive to effusion >300ml (some places say 200)
- USS
 - For assessing pleural effusion
 - For guiding aspiration
- Aspiration
 - Must be USS guided (BTS Guidelines)
 - Note appearance of fluid
 - Sent for
 - Biochem: protein, LDH, pH, glucose
 - Cytology (at least 20ml sample)
 - MCS and AFB
 - pH
 - Other: Amylase, cholesterol, RF and ANA
- Further tests
 - CT
 - Ideally scan before fluid removal as can improve images of pleural surfaces.
 - Pleural tissue biopsy for histology and TB culture

Diagnostic criteria for pleural effusion
- Normal
 - Clear or straw, pH 7.60-7.64, protein <2, WCC<1, LDH<50% plasma, glucose similar to plasma
- Transudate
 - Protein <30 g/l: in patients with normal serum protein
- Exudate
 - Protein >30 g/l: in patients with normal serum protein
 - **Light’s criteria**
 - More sensitive for diagnosis of exudative effusions and helpful if fluid protein between 25-35 g/l. Positive if one of these is true:
 - Pleural:serum protein ratio; >0.5 = exudate
 - Pleural:serum LDH ratio; >0.6 = exudate
 - Pleural LDH >2/3 the upper limit of normal serum LDH
 - NB. With diuretics, pleural protein and LDH are generally higher.

- Empyema
 - pH<7.2
 - Glucose usually <3.3
 - Bacteria in it
 - Fluid LDH generally >1000 in empyema
- LDH>1000
 - Empyema, malignant, rheumatoid, paragonamiasis
- Bloody
 - Malignancy, TB, PE, trauma
- Chylothorax
 - Milky white, chylomicrons, cholesterol>4, Triglyceride level > 110mg/dl
- High amylase
 - Pancreatitis, malignancy, oesophageal rupture
- Low glucose or low pH
 - Empyema, malignancy, TB, oesophageal rupture, SLE
- pH>7.3 in malignancy means:
 - More pleural involvement, higher cytology yield, decreased success in pleurodesis, decreased life expectancy

Management of pleural effusion
- Treat the underlying cause
 - diuretics, antibiotics, immunosuppressants
- Aspiration (USS guided)
- Indications for chest drain:
 - Empyema or parapneumonic effusion with purulent fluid or pH<7.2
 - Malignant effusions which are candidates for pleurodesis
 - Large effusions in acutely unwell patients
- Pleurodesis
- Medical or VATs

Complications of pleural effusion
- Respiratory failure
- Infection and empyema
Prognosis of pleural effusion
- Dependent on underlying cause

Procedure for Thoracocentesis:
- Explain procedure to patient
- Obtain written consent
 - Complications include pneumothorax, cough, bleeding, empyema, spleen or liver puncture, malignant seeding (particularly in mesothelioma – my need prophylactic radiotherapy to area later)
- Check clotting (INR <1.5)
- Must be done under USS Guidance (by a doctor trained in USS – see BTS guidance)
- Aseptic technique
- Infiltrate site (skin, intercostals muscle and parietal pleura) with 10ml 1% lidocaine.
- Aim above the upper border of the appropriate rib to avoid neurovascular bundle that runs below each rib.
- For Diagnostic Thoracocentesis:
 - Aspirate pleural fluid with a green (21G) needle and 50ml syringe
 - If uncomplicated – no need for CXR post procedure
- For Therapeutic Thoracocentesis:
 - Hospitals vary as to kit available
 - Verify that insertion site is correct by aspirating fluid with a green (21G) needle
 - Advance a large bore cannula along the same track
 - Remove needle and attach a 3 way tap
 - Aspirate fluid with a 50ml syringe via the 3 way tap and flush the fluid out into container through extension tubing connected to remaining port of 3 way tap.
 - Drain maximum of 1.5l in one go – risk of re-expansion pulmonary oedema
 - Stop aspirating if any resistance felt or if patient experiences any discomfort or severe coughing
 - CXR post to document extent of improvement and to exclude pneumothorax or trapped lung

Questions about pleural effusions

How do you define a transudate and exudate in pleural effusions?
- Transudate
 - Protein <30 g/l
- Exudate
 - Protein >30 g/l
- Light’s criteria
 - More sensitive for diagnosis of exudative effusions and helpful if fluid protein between 25-35 g/l. Positive if one of these is true:
 - Pleural:serum protein ratio; >0.5 = exudate
 - Pleural:serum LDH ratio; >0.6 = exudate
 - Pleural LDH >2/3 the upper limit of normal serum LDH
What are the causes of transudative pleural effusions?

- Failures
 - Left ventricular failure
 - Liver failure (cirrhotic liver disease)
 - Nephrotic syndrome and hypoalbuminaemia
- Pulmonary
 - Pulmonary embolism (can be transudates or exudates)
 - Atelectasis
 - Malignancy (5% are transudate)
- Cardiac
 - Constrictive pericarditis
- Other
 - Hypothyroidism
 - Meig’s syndrome (ovarian tumours producing right-sided effusion)

What are the causes of exudative pleural effusions?

- Infection
 - Parapneumonic
 - TB
 - Empyema
- Malignancy
- Rheumatological
 - Rheumatoid arthritis
 - Connective tissue disease (RA, SLE)
- Pulmonary embolism (can be transudates or exudates)
- Rare causes
 - Post-MI, pancreatitis, meothelioma, sarcoidosis, asbestosis
 - Drug induced (methotrexate, amiodarone, bromocriptine, phenytoin, nitrofurantoin)
 - Radiotherapy
 - Yellow-nail syndrome, familial Mediterranean fever
 - Lymphangioleiomyomatosis

- Pneumothoraces and cylothoraces in middle-aged women.

What should you send pleural fluid for after aspiration?

- Note colour
- Biochemistry: protein, LDH, glucose, pH
- To get a reliable and quick pH take a sample in an ABG syringe – can run this on blood gas machines
- Cytology (at least 20ml sample)
- MCS and AFB
- Other if indicated: amylase, cholesterol, RF and ANA